ANALYTICAL METHODOLOGY
The analysis of biotechnology-derived products relies heavily on the use of sophisticated analytical methods for demonstrating the structural identity and homogeneity of proteins and for evaluating the shelf life or stability of these products.This section discusses accuracy,precision,informational content,and general applicability of the most commonly used methods.Some methods,such as host cell impurity assays and residual DNAprocedures,may be both highly process-and product-specific and thus should be included in the individual monographs.
Reference Standard Considerations
The use of suitable reference standards and/or reference materials is extremely important in the analysis of biotechnology-derived products.These standards may be either natural materials or proteins produced by genetic engineering.Many biotechnology-derived products require the availability of accurately characterized reference standards from internationally recognized sources such as the USP(see USP Reference Standards á11ñ),WHO,NIH,and FDA.Currently,reference standards with defined activity units are available from these sources for some biologicals.These standards are used by the manufacturers in testing or to calibrate secondary standards using many of the assays described in this section.The potency value of the reference standard is obtained through collaborative studies that,when statistically evaluated,are used to determine the ultimate potency value assigned to the reference standard.The secondary standard can be used to determine the labeled amount of drug substance or potency defined on a product label.Thus,reference standards/reference materials for biotechnology-derived products that are used for the analytical purposes described in specific USPmonographs will be approved and made available from USP.Ideally,these reference standards should be in use worldwide and should always be calibrated against the U.S.standard that is deposited by the manufacturer at FDAfor those products licensed by FDA.This ensures the accurate and consistent determination of the activity,strength,and purity of these products.Because of a number of issues unique to biotechnology-derived products,such as process and product specificity,separate reference standards for similar products may be required.In addition,thorough development and recalibration of reference standards to replace depleted or expired standards will be conducted by USPto ensure that the label claims of the drug products do not change.One caveat in the assignment of the potency of the primary standard through collaborative studies is that units of activity so defined are only meaningful when compared in a single assay that is both suitably accurate and well described.Attempts to compare activity values from even subtly different assays can be expected to yield widely varying results.
Typical Methodology
There are a number of specific analytical methods that pertain to biotechnology-derived products.Many of the assays and tests described may be performed in different ways and,because some of these may be product specific as well,there is a need for clear guidelines on the application of specific methods to particular situations.See the chapters Design and Analysis of Biological Assays á111ñand Validation of Compendial Methods á1225ñfor some general information on methodology.
PROTEIN CONTENT
Protein content assays are used to quantitatively determine the amount of protein in a given biotechnology-derived product.The determination of protein content is often one of the most difficult measurements that needs to be made and often requires independent confirmation by alternate methods.Where applicable,methods such as UVspectrophotometry with a valid absorptivity and Kjeldahl nitrogen analysis can be used to determine absolute amounts of protein independent of reference standards.However,methods such as Lowry protein,biuret,and quantitative amino acid analysis,which require reference standards,also yield accurate values.Protein content assays are among the most important of all the methods used for these products because the results of other types of assays,such as potency,are also dependent on them.
There are several assays for the determination of protein content that are commonly used.These assays may be used at different points in the production process of a given biotechnology-derived product.For highly pure proteins,the simplest protein content method is based on the determination of the UVabsorbance of a protein solution by spectrophotometry.The absorbance at the absorption maximum is determined and the protein concentration is calculated with the use of an empirically determined absorptivity.This technique is applicable to proteins containing the aromatic amino acid residues tryptophan,tyrosine,and/or phenylalanine.The absorption wavelength often used is 280nm.The extinction coefficient,or molar absorptivity,should be determined in the same solvent that is used for the sample to be measured.If necessary,the product may be diluted prior to analysis to obtain solutions with absorbance values in the linear range of detection.Higher molecular weight aggregates and particulates may give rise to light-scattering effects,which provide artificially high absorbance values.Excipient components that have significant absorbance at 280nm will also interfere with this test.UVspectrophotometry is unique among the protein content methods in that it is an absolute measure of concentration of a specific protein requiring no calibration with standards.
Acommonly used general protein content method is the Lowry assay.This is based on the biuret reaction of proteins with copper (II)in a basic solution and the Folin-Ciocalteu phosphomolybdic-phosphotungstic acid reduction to heteropolymolybdenum blue by the copper-catalyzed oxidation of the aromatic amino acids tyrosine,tryptophan,and phenylalanine in the protein.The reaction products are blue and are quantitated spectrophotometrically in the visible region between 540and 560nm.This reaction is linear at microgram protein levels.The assay,however,is prone to interferences from a number of substances such as alcohols,sugars,and detergents.In some cases,interfering substances or product may be removed prior to analysis,e.g.,by precipitation.Also,the preparation of controls containing interfering substances that are in the drug product may correct for their presence.Although bovine serum albumin historically has been used to prepare the standard curve,different proteins are known to react with differing intensity,so that a reference material of the same product should be used for calibration.The bicinchoninic acid (BCA)assay is a useful alternative to the Lowry assay because it is less sensitive to interfering substances.The working reagent is a BCA-copper (II)solution.The copper (II)complex is reduced to copper (I)in the presence of protein,and the purple color may be quantitated spectrophotometrically at approximately 560nm.
Other colorimetric assays can also be used.The Bradford method,for example,employs the binding of the dye Coomassie Brilliant Blue to the protein in an acidic environment.The concentration of the protein in solution is then determined by comparing the absorbance at 595nm with a standard curve of a reference material.
Fluorescent methods used are normally based on either fluorescamine or o-phthaldialdehyde (OPA).The main advantage of these assays is increased sensitivity.Another advantage is their use with hydrophobic proteins.Fluorescamine and OPAreact with primary amines both at the N-terminus of the polypeptide and with amino acid side chains,such as lysine.
The Kjeldahl nitrogen method,Nitrogen Determination á461ñ,provides an accurate and precise determination of protein concentration and is often used in the determination of UVprotein absorptivities.The assay is performed in two stages.The sample is first decomposed with sulfuric acid to produce ammonium sulfate,carbon dioxide,and water.The decomposition is performed at the boiling point of sulfuric acid in long-necked,pear-shaped flasks.These flasks serve to condense water vapor and prevent the loss of material.Depending on the efficiency of decomposition,various salts such as potassium sulfate may be added to increase the boiling point of the sulfuric acid solution.Oxidizing agents such as perchloric acid or potassium permanganate have also been used to improve the decomposition.The second stage of the assay involves the direct determination of ammonia.In most macrodeterminations,ammonia is steam distilled from the mixture after basification with sodium hydroxide.The ammonia can typically be quantitatively distilled out of the mixture in 5to 20minutes and absorbed quantitatively into a standardized acidic solution of known volume and normality.The excess acid is then back-titrated with standardized base.For crude determinations of protein,the ammonia value (and therefore the nitrogen content),is multiplied by a factor of 6.25mg of protein per mg of nitrogen,which corresponds to a nitrogen content of 16%.The protein value so obtained is generally valid for most proteins.If a more accurate value is required,as for an absorptivity determination,then the conversion factor must be calculated for the nitrogen content of the individual pure protein from the known amino acid composition.For glycoproteins that contain amino sugars,the calculated value is biased high unless a correction is applied.
Amino acid analysis is used in the determination of the appropriate absorptivity of the protein and may also be used quantitatively for the determination of protein content.This procedure,although more complicated than those described above,can also yield accurate results.
AMINO ACID ANALYSIS
Amino acid analysis is a classical protein chemistry method for the determination of the amino acid composition of proteins and peptides.The method consists of the complete hydrolysis of a protein or peptide to its component amino acids,which are then chromatographically separated and quantitated.Amino acid analysis,therefore,can be used to determine both the amino acid composition of a product (i.e.,identity)and the total amount of protein present.The method has some inherent difficulties,such as complete or partial destruction of some amino acids,that can be circumvented by appropriate analytical methodology.The amino acid tryptophan is destroyed by 6Nhydrochloric acid hydrolysis and thus requires the use of alternate hydrolysis conditions.The amino acids serine and threonine may be partially destroyed,whereas peptide bonds between bulky hydrophobic residues such as valine and isoleucine may be more resistant to hydrolysis,in both cases yielding values lower than actual.Accordingly,analysis of time-course hydrolysis samples may be used to compensate for these factors.Cysteine and methionine may require preoxidation to cysteic acid and methionine sulfone,respectively,for accurate quantitation.Each specific protein may require a procedure of optimized hydrolysis conditions for its amino acid analysis to obtain the optimal results.
Amino acid analysis is performed in two stages.The first stage involves the hydrolysis of the protein into its component amino acids.This hydrolysis is normally performed with 6Nhydrochloric acid at about 110for 24hours.Some proteins may require longer or more stringent hydrolysis conditions.The second stage is the separation and quantitation of the individual amino acids by some form of chromatography that can be performed with either precolumn or postcolumn derivatization.Anumber of precolumn derivative procedures are available,such as with OPA,phenylisothiocyanate (PITC),and fluorenylmethoxycarbonyl (FMOC).These derivatives are then separated by reversed-phase (RP)high-performance liquid chromatography (HPLC)and quantitated following UVor fluorescence detection.Postcolumn derivative methods involve separation of the component amino acids by high-performance ion-exchange chromatography (HPIEC)followed by postcolumn reaction with a chromophore,such as ninhydrin,and quantitation following UV/visible detection.All of these methods are suitable for performing amino acid analyses and each has its inherent advantages and disadvantages.OPAderivatives are very simple to prepare and are sensitive,requiring only a small amount of sample,but they are unstable and have to be chromatographed immediately upon preparation.Phenylthiocarbamyl (PTC)derivatives,on the other hand,are relatively more stable.Postcolumn derivatization with ninhydrin is often performed in the low-pressure mode and has the advantage of stability of the amino acid hydrolysate.Its disadvantage is the need for dual detection at 440and 570nm and for post-column apparatus.